This function replaces specific values in a variable with NA. It would most commonly be used to remove missing values indicated with codes such as "NA", -999 or "none". (NB: It is very similar to dplyr's na_if but accepts more than one value.)

na_ifs(x, replace)

Arguments

x

The variable to transform.

replace

One or more values to replace by NA.

Examples

library(dplyr)

ess_health %>% 
    mutate(eisced = na_ifs(eisced, c(7, 55)))
#> # A tibble: 7,226 × 23
#>    cntry  gndr  agea eisced pweight pspwght health height weight icbrnct etfruit
#>    <chr> <dbl> <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>
#>  1 DE        1    52      3    2.30   0.608      1    187     78       1       1
#>  2 DE        2    52      5    2.30   0.463      2    168    110       1       4
#>  3 DE        1    62      5    2.30   0.640      1    181     84       1       5
#>  4 DE        2    62      3    2.30   1.14       3    155     63       1       5
#>  5 DE        2    20      5    2.30   0.853      1    160     70       1       2
#>  6 DE        1    49     NA    2.30   0.364      2    177     89       1       3
#>  7 DE        1    63      6    2.30   0.310      3    169     87       1       1
#>  8 DE        2    32      3    2.30   1.35       3    163     62       1       3
#>  9 DE        2    66      5    2.30   0.341      1    157     56       1       1
#> 10 DE        1    15      1    2.30   1.74       3    172     72       1       4
#> # ℹ 7,216 more rows
#> # ℹ 12 more variables: eatveg <dbl>, dosprt <dbl>, cgtsmke <dbl>,
#> #   alcfreq <dbl>, fltdpr <dbl>, flteeff <dbl>, slprl <dbl>, wrhpp <dbl>,
#> #   fltlnl <dbl>, enjlf <dbl>, fltsd <dbl>, cldgng <dbl>