This function sets a variable to NA based on one or several logical conditions. It would most naturally be used inside a dplyr-mutate call. By default, the conditions are combined with a logical OR, yet this can be changed to AND by setting operator = "&".

na_when(x, ..., operator = "|")

Arguments

x

The variable to transform.

...

One or more logical conditions, involving x or other variables.

operator

Name of a logical operator to combine the conditions. Defaults to "|" (or), "&" (and) is the other common choice, though "xor" would also work.

Details

Note that the function is called na_when to prevent clashing with dplyr's na_if ... even though the latter might be the more intuitive name.

Examples

library(dplyr)

ess_health %>% 
    mutate(eisced = na_when(eisced, cntry == "DE", agea < 21))
#> # A tibble: 7,226 × 23
#>    cntry  gndr  agea eisced pweight pspwght health height weight icbrnct etfruit
#>    <chr> <dbl> <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>
#>  1 DE        1    52     NA    2.30   0.608      1    187     78       1       1
#>  2 DE        2    52     NA    2.30   0.463      2    168    110       1       4
#>  3 DE        1    62     NA    2.30   0.640      1    181     84       1       5
#>  4 DE        2    62     NA    2.30   1.14       3    155     63       1       5
#>  5 DE        2    20     NA    2.30   0.853      1    160     70       1       2
#>  6 DE        1    49     NA    2.30   0.364      2    177     89       1       3
#>  7 DE        1    63     NA    2.30   0.310      3    169     87       1       1
#>  8 DE        2    32     NA    2.30   1.35       3    163     62       1       3
#>  9 DE        2    66     NA    2.30   0.341      1    157     56       1       1
#> 10 DE        1    15     NA    2.30   1.74       3    172     72       1       4
#> # ℹ 7,216 more rows
#> # ℹ 12 more variables: eatveg <dbl>, dosprt <dbl>, cgtsmke <dbl>,
#> #   alcfreq <dbl>, fltdpr <dbl>, flteeff <dbl>, slprl <dbl>, wrhpp <dbl>,
#> #   fltlnl <dbl>, enjlf <dbl>, fltsd <dbl>, cldgng <dbl>
    
mtcars %>% 
    mutate(carb = na_when(carb, cyl > 6, mpg < 19, operator = "&"))     
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3   NA
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3   NA
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3   NA
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3   NA
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3   NA
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3   NA
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3   NA
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3   NA
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3   NA
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3   NA
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3   NA
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5   NA
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5   NA
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2