This function takes two variables that are representing paired data and calculates a paired samples t.test. It then also calculates and prints Cohen's d as a measure of effect size and shows a clearer data label than the t.test function.

paired_t_test_d(data, x, y)

Arguments

data

A dataframe

x, y

Character strings indicating the names of the two variables

Value

Invisibly returns a list including the t.test() output and Cohen's D

Examples

paired_t_test_d(iris, "Sepal.Width", "Petal.Length")
#> 
#> 	Paired t-test
#> 
#> data:  Sepal.Width vs. Petal.Length
#> t = -4.3093, df = 149, p-value = 2.961e-05
#> alternative hypothesis: true mean difference is not equal to 0
#> 95 percent confidence interval:
#>  -1.0219565 -0.3793768
#> sample estimates:
#> mean difference 
#>      -0.7006667 
#> 
#> [1] "Cohen's d: -0.352"