This function turns the correlation matrix returned by cor_matrix() and
its relatives into a tidy dataframe. Note that by default, results for both the cor(A, B)
and cor(B, A) are returned, while entries for A, A, i.e. the values on the diagonal,
are never included.
# S3 method for class 'cor_matrix'
tidy(x, both_directions = TRUE, ...)A cor_marix object returned from
cor_matrix()
Should both cor(A, B)
and cor(B, A) be returned. Defaults to TRUE.
Additional arguments. Not used. Needed to match generic signature only.
A tibble::tibble() with columns:
Name of the first variable
Name of the second variable
The estimated value of the correlation
The t-statistic used for significance testing
The two-sided p-value of the correlation
Number of observations used to compute the correlation
Lower bound of confidence interval. Width is determined in call to cor_matrix()
Upper bound of confidence interval. Width is determined in call to cor_matrix()
# Create and tidy a correlation matrix
cm <- cor_matrix(iris)
tidy(cm, both_directions = FALSE)
#> # A tibble: 6 × 9
#> column1 column2 estimate std.error p.value statistic n conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sepal.… Sepal.… -0.118 0.0816 1.52e- 1 -1.44 150 -0.273 0.0435
#> 2 Petal.… Sepal.… 0.872 0.0403 1.04e-47 21.6 150 0.827 0.906
#> 3 Petal.… Sepal.… 0.818 0.0473 2.33e-37 17.3 150 0.757 0.865
#> 4 Petal.… Sepal.… -0.428 0.0743 4.51e- 8 -5.77 150 -0.551 -0.288
#> 5 Petal.… Sepal.… -0.366 0.0765 4.07e- 6 -4.79 150 -0.497 -0.219
#> 6 Petal.… Petal.… 0.963 0.0222 4.68e-86 43.4 150 0.949 0.973
# With ESS health data
cm_ess <- cor_matrix(ess_health,
var_names = c(health = "Health", dosprt = "Sport"))
tidy(cm_ess)
#> # A tibble: 2 × 9
#> column2 column1 estimate std.error p.value statistic n conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sport Health -0.183 0.0116 5.86e-55 -15.7 7197 -0.205 -0.160
#> 2 Health Sport -0.183 0.0116 5.86e-55 -15.7 7197 -0.205 -0.160